FoCM 2014 conference

Workshop A6 - Real Number Complexity

December 12, 15:00 ~ 15:30 - Room C11

## Can everything be computed? - On the Solvability Complexity Index and Towers of Algorithms

### University of Cambridge, United Kingdom   -   ach70@cam.ac.uk

This talk addresses some of the fundamental barriers in the theory of computations. Many computational problems can be solved as follows: a sequence of approximations is created by an algorithm, and the solution to the problem is the limit of this sequence (think about computing eigenvalues of a matrix for example). However, as we demonstrate, for several basic problems in computations (computing spectra of infinite dimensional operators, solutions to linear equations or roots of polynomials using rational maps) such a procedure based on one limit is impossible. Yet, one can compute solutions to these problems, but only by using several limits. This may come as a surprise, however, this touches onto the boundaries of computational mathematics. To analyze this phenomenon we use the Solvability Complexity Index (SCI). The SCI is the smallest number of limits needed in order to compute a desired quantity. In several cases (spectral problems, inverse problems) we provide sharp results on the SCI, thus we establish the absolute barriers for what can be achieved computationally. For example, we show that the SCI of spectra of self-adjoint infinite matrices is equal to two, thus providing the first algorithms to compute such spectra in two limits. Moreover, we establish barriers on error control. We prove that no algorithm can provide error control on the computational spectral problem or solutions to infinite-dimensional linear systems. In particular, one can get arbitrarily close to the solution, but never knowing when one is "epsilon" away. In addition, we provide bounds for the SCI of spectra of classes of Schrodinger operators, thus we affirmatively answer the long standing question on whether or not these spectra can actually be computed. Finally, we show how the SCI provides a natural framework for understanding barriers in computations. In particular, we demonstrate how the impossibility result of McMullen on polynomial root finding with rational maps in one limit, and the framework of Doyle and McMullen on solving the quintic in several limits, can be put in the SCI framework.

Joint work with Jonathan Ben-Artzi (University of Cambridge), Olavi Nevanlinna (Aalto University), Markus Seidel (TU Chemnitz).